

Prebiotic Chemistry in Sun-like Star Forming Regions: Where is Phosphorus ?

> B. Lefloch (IPAG, Grenoble, France)

The Astrochemical View on Solar-type Star Formation

Prebiotic Chemistry in Star Forming Regions

Terrestrial life is based on CARBON chemistry

Complex Organic Molecules (COMs)

Water

(CH₂OH)₂ Ethylene Glycol NH₂CHO Formamide

CH₂OHCHO Glycolaldehyde CH₃NH₂ Methylamine

efficient solvant (liquid on large T range) ---> facilitates formation of COMs

H,O,C,N are the most abundant elements in Space the simplest elements able to form (multiple) bonds

Prebiotic Chemistry in Star Forming Regions

Phosphorus : a Key Player

- capacity to form multiple bonds
- PO bond

Adenosine tri/di/monophosphate:Energy storage/consumption processin all life formsSchwartz (2006)

ATP is also involved in biochemical processes: DNA, RNA synthesis

Urey-Miller experiment: PH₃ facilitates amino-acid synthesis

Phosphorus in the ISM

[P] Solar abundance is low (Asplund 2009): 3 x 10⁻⁷

Phosphorus in the ISM

Phosphorus in Solar-Type Star Forming regions

Searching for P-bearing species with ASAI

(Astrochemical Survey At IRAM)

Unbiased spectral line surveys covering the full 3, 2, 1.3 mm bands along the main chemical stages of Solar type star formation

(Lefloch et al. 2018)

Sources	Coordinates (J2000)	d (pc)	Lum. (L_{\odot})	3 mm (mK)	2 mm (mK)	1.3 mm (mK)	δu (kHz)	Comment
TMC1	$04^{h}41^{m}41.90^{s} + 25^{\circ}41^{\prime}27.1^{\prime\prime}$	140	-	-	4.2-4.2	-	48.8, 195.3	Early prestellar core
L1544	$05^{h}04^{m}17.21^{s} + 25^{\circ}10'42.8''$	140	_	2.1 - 7.0	-	_	48.8	Evolved prestellar core
B1b	$03^h 33^m 20.80^s + 31 \circ 07' 34.0''$	230	0.77	2.5 - 10.6(*)	4.4-8.0	4.2 - 4.6	195.3	First Hydrostatic Core
L1527	$04^{h}39^{m}53.89^{s} + 26^{\circ}03'11.0''$	140	2.75	2.1 - 6.7(*)	4.2 - 7.1	4.6 - 4.1	195.3	Class 0 WCCC
IRAS4A	$03^{h}29^{m}10.42^{s} + 31^{\circ}13'32.2''$	260	9.1	2.5 - 3.4	5.0 - 6.1	4.6-3.9	195.3	Class 0 Hot Corino
L1157mm	$20^{h}39^{m}06.30^{s} + 68^{\circ}02'15.8''$	250	3	3.0 - 4.7	5.0 - 6.5	3.8 - 3.5	195.3	Class 0
SVS13A	$03^{h}29^{m}03.73^{s} + 31^{\circ}16'03.8''$	260	34	2.0 - 4.8	4.2 - 5.1	4.6 - 4.3	195.3	Class I
AB Aur (†)	$04^{h}55^{m}45.84^{s} + 30^{\circ}33'33.04''$	145	-	4.6 - 4.3	4.8 - 3.9	2.1 - 4.3	195.3	protoplanetary disk
L1157-B1	$20^{h}39^{m}10.20^{s} + 68^{\circ}01'10.5''$	250	-	1.1 - 2.9	4.6 - 7.2	2.1 - 4.2	195.3	Outflow shock spot
L1448-R2	$03^h 25^m 40.14^s + 30^{\circ} 43' 31.0''$	235	-	2.8 - 4.9	6.0 - 9.7	2.9 - 4.9	195.3	Outflow shock spot

An ideal Tool to obtain the census of P-bearing species

The ASAI Results

PO and PN are detected *only*

Source	Туре	PN	РО	PH ₃
TMC1	Early Prestellar Core	-	-	-
L1544	Late Prestellar Core	-	-	-
B1b	Early Class 0 (FHSC)	Y	-	-
IRAS4A	Class 0 (hot corino)	Y	-	-
L1157-mm	Class 0 (WCCC)	-	-	-
L1527	Late Class 0 (WCCC)	-	-	-
SVS13A	Class I (hot corino)	-	-	-
L1157-B1	Shock	Y	Y	-
L1448-R2	Shock	-	-	-

PN J=2-1

Lefloch et al. (2019**)**

ALLAM 2019 - Sao Paulo - Lefloch

 PH_3 undetected: $[PH_3] < 1.5 - 4 \times 10^{-12}$

PN in Protostars: B1b & IRAS4A

Lopez-Sepulcre et al. (2015)

10^s4

IRAS4A: 9 L_0 - 260 pc

200 a

3^h29^m10^s6

B1b: $0.8 L_{o} - 230 pc$

- Weak Line Emission
- $\blacktriangleright FWHM \sim 1 \text{ km/s}$
- Only Low-Excitation Transitions

J=2-1 and J=3-2 (E_{UP} =13.5K) are detected

PN J=2-1

PN traces the Cold Envelope

Lefloch et al. (2019)

- > Why is only PN detected in protostars ?
- > Why is PN detected only in cold gas around protostars?
- What is the major reservoir of Phosphorus ?

→ NEW P-BEARING CHEMISTRY UNDER STUDY

P- Chemistry in the shock L1157-B1

First detection of PO and PN in Sun-like star forming region L1157

Lefloch et al. (2016)

 $X(PO) = 2.5 \times 10^{-9}$: PO/PN= 3 **Phosphorus depleted by 100**

PO and PN are produced in the shock They are tracing different layers

The NOEMA view of L1157-B1

PN J=2-1 93979 MHz PO ²П _½ J=5/2 – 3/2 109 GHz

NOEMA NOrthern Extended Millimeter Array

PO and PN are tracing the apex of the cavity

ALLAM 2019 - Sao Paulo - Lefloch

P-Modelling in Shocks

UCL_CHEM (Viti et al. 2011) + Parametric shock code (Jimenez-Serra et al. 2008)

Step 1 : pre-shock gas and dust conditions.

<u>Main assumption</u>: P is depleted and hydrogenated on the dust grains: PH, PH_2 , PH_3 (Charnley & Millar 1994)

Step 2: chemical gas and dust evolution across the shock.

 \rightarrow density n0, shock velocity, X_i[P], duration of pre-shock phase

A poorly explored chemistry

A few (partial) networks have been proposed:

Charnley and Millar (1994) Aota & Aikawa (2012) Vasyunin & Herbst (2013)

P- and N- are coupled

Aota & Aikawa (2012)

Shock Modelling

P must be depleted by a factor 100 in order to reproduce the observations Good fits when the pre-shock density is at least 10^5 cm⁻³

Stage 1: Destruction routes of PH_n

Stage 2: Formation of PN / destruction of PO

ALLAM 2019 - Sao Paulo - Lefloch

Conclusions and Prospects

PO and PN (only) have been detected so far in solar-type star forming regions:

Strong P depletion is found What is the main P carrier on dust grains ?

PN is detected towards cold protostellar envelopes and shock regions \rightarrow multiple formation mechanisms ?

PO and PN are early gas phase products in shocks: PO disappears earlier than PN.

Preliminary chemical modelling succeeds in accounting for PO and PN emission in shocks but

 → MORE WORK IS NEEDED TO MODEL THE P + N CHEMISTRY
 → UNDERSTAND THE ROLE AND FATE OF PH₃

11157CO(1-0)H₂CO 17

ALLAM 2019 - Sao Paulo - Lefloch