Where should we look to find vestiges of life in exoplanets?

Marcos Buckeridge Departamento de Botânica Instituto de Biociências

Are we alone in the universe?

There are hundreds of BILLIONS OF galaxies
The Milkyway alone has hundreds of BILLIONS of stars
Each star has at least ONE plantet

4) THE POSSIBILITY OF FINDING LIFE OUTSIDE OF EARTH IS NOT SO LOW

KEPLER and K2 MISSION finding exoplanets using the transit technic

PLANTEDIVERSITY

Exoplanet Populations

KEPLER 186f Similar conditions to the Earth Orbits a Red Star

Habitable Zone

JUST RIGHT

TOO COLD

Planet size: 1-2x Earth

EXAMPLES OF TYPES OF BIOCHEMISTRY ATERNATIVE ALTERNATIVE TO EARTH'S BIODIVERSITY

Overview of hypothetical	l types of biochemistry		
Туре	Synopsis	Basis	Remarks
Ammonia biochemistry	Ammonia-based life	Non-water solvents	The possible role of liquid ammonia as an alternative solvent for life is an idea that goes back at least to 1954, when JBS Haldane raised the topic at a symposium about life's origin.
Arsenic biochemistry	Arsenic-based life	Alternate biochemistry	Arsenic, which is chemically similar to phosphorus, while poisonous for most life forms on Earth, is incorporated into the biochemistry of some organisms.
Dust and plasma-based biochemistry	Exotic matrix life	Nonplanetary life	In 2007, Vadim N. Tsytovich and colleagues proposed that lifelike behaviors could be exhibited by dust particles suspended in a plasma, under conditions that might exist in space
Extremophiles	Life in variable environments	Alternate environment	It would be biochemically possible to sustain life in environments that are only periodically consistent with life as we know it.
Methane biochemistry (Azotosome)	Methane-based life	Non-water solvents	Methane(CH ₄) is a simple hydrocarbon: that is, a compound of two of the most common elements in the cosmos: hydrogen and carbon. Methane life is hypothetically possible.
Non-green photosynthesizers	Alternate plant life	Other speculations	Physicists have noted that, although photosynthesis on Earth generally involves green plants, a variety of other- colored plants could also support photosynthesis, essential for most life on Earth, and that other colors might be preferred in places that receive a different mix of stellar radiation than Earth.
Silicon biochemistry (Organosilico)	Silicon-based life	Alternate biochemistry	Like carbon, silicon can create molecules that are sufficiently large to carry biological information.
Sulfur biochemistry	Sulfur-based life	Alternate biochemistry	The biological use of sulfur as an alternative to carbon is purely hypothetical, especially because sulfur usually forms only linear chains rather than branched ones.

Did life come from outside the Earth?

If so, carbon based life may be spread through the universe

Molecules of life

SCIENTIFIC REPORTS

OPEN Topological assessment of metabolic networks reveals evolutionary information

Received: 8 April 2018 Accepted: 7 October 2018 Published online: 29 October 2018 Jeaneth Machicao¹, Humberto A. Filho¹, Daniel J. G. Lahr², Marcos Buckeridge² & Odemir M. Bruno ¹

Evolutionary information was inferred from the topology of metabolic networks corresponding to 17 plant species belonging to major plant lineages *Chlorophytes*, *Bryophytes*, *Lycophytes* and *Angiosperms*. The plant metabolic networks were built using the substrate-product network modeling based on the metabolic reactions available on the PlantCyc database (version 9.5), from which their local topological

Figure 1. (a) Average number of reactions ($\langle R \rangle$) versus the average number of metabolites ($\langle N \rangle$) per plant clade. The plant clades: *Dicotyledons, Monocotyledons, Lycophytes, Bryophytes* and *Chlorophytes* are listed according with their average number of nodes and reactions. (b) The average number of plant metabolic reactions in function of the average values of three topological measures namely, mean degree $\langle \bar{k} \rangle$ (triangle), average path length *L* (circle) and the incoming power-law exponent γ_{in} (square), per each plant clade.

Code Biology: the semiotics of life

"Life" on Earth: strong bias to animal life

For life to exist as we know, ecosystems are needed

THE AMAZON What do you see? Animals?

Evolution of photosythesis and O₂ production on Earth

BASIC MECHANISM OF PHOTOSYNTHESIS

Cloroplastos de cana de açúcar

Photosynthesis provokes periodic changes in atmospheric CO2 concentration

THE EVOLUTION OF THE GLYCOMIC CODE IN LIFE

Nitrogen users

Fungi

Animals

hyaluronic acid - β -(1,4) glucuronic acid β -(1,3) N-acetylgalactosamine chondroitin SO₄ - β -(1,4) glucuronic acid α -(1,3 N-acetylgalactosamine dermatan SO₄ - β -(1,4) iduronic acid α -(1,3) N-acetylgalactosamine keratan SO₄ - β -(1,3) N-acetylglucosamine β -(1,4) galactose heparan SO₄ - glucuronic acid β -(1,4) N-acetylgalactosamine Heparin - iduronic acid β -(1,4) N-acetylgalactosamine Heparin - iduronic acid α -(1,4) glucosamine Chitin - β -1,4 linked N-acetylglucosamine Tunicates can make cellulose (β -1,4 linked glucan) (endosymbiosis)

Bacteria

(Gram-positive, Gram-negative Cyanobacteria) **Peptidoglycan**- N-acetyl Muramic Acid β -(1,4) N-acetylglucosamine Can make cellulose (β -1,4 linked glucan), but not in the wall **Cellulose based**

Plants and Green Algae

 $\label{eq:constraint} \begin{array}{l} \textbf{Cellulose} \ (\beta\ensuremath{\cdot}\ensuremath{$

Arabinogalactans – main chain rhamnogalacturonnan branched with short chains of β -(1,4)-galactan, β -(1,3),(1,6)-galactan, α -(1,5) arabinan

Sulfate users

Red Algae

 $\label{eq:spectral_constraints} \begin{array}{l} \mbox{Cellulose } (\beta\mbox{-}1\mbox{,}4 \mbox{ linked glucan}) \\ \mbox{β-glucan β-(1,3),(1-4)-glucan,} \\ \mbox{Agars - β-(1,4) galactose a-(1,3)-linked to $3\mbox{,}6\mbox{-anhydrogalactose $+$ SO}_4$ \\ \mbox{$carragenan - β-(1,3),(1,4) galactan $+$ SO}_4$, \\ \mbox{Alginates - α-(1,4) guluronic acid dimers, β-(1,4) manuronic, α-(1,4) guluronic acid linked to mannuronic acid \\ \mbox{$Fucoidans - α-(1,3) main chain of fucose, branched with α-(1,2) and α-(1,4) fucose units $-$ $SO}_4$ \\ \end{array}$

Archea

S-protein Carbohydrates not relevant in cell walls Carbohydrate polymers of the Glycomic Code in some groups of the tree of life

Cell wall model

The most abundant biological structure on Earth is the plant cell wall

...and the most abundant compound on Earth is cellulose

We can detect cellulose and other polymers using FTIR

Would we be able to detect such compounds on the surface of exoplanets?

Fig. 5 Fourier Transformed Infra-Red (FTIR) spectroscopy of alcohol-insoluble residue (AIR) and cell wall extracts of leaves (*black lines*) and culm (grey lines) of sugarcane

WHAT TO LOOK FOR?

Plants are the more abundant organisms on earth in terms of biomass. They are the energy capture machines of ecosystems. Thus, if we want to search for Earth's-like life in exoplanets, we should look for.....

1) green color reflection from the surface of exoplanets be detectable?

2) Fluorescence of chlorophyll would also be an option;

3) Look for a combination of vibrations that could reveal the presence of cellulose-like polymers;

4) O2and CO2 daily variations, combined with green color and fluorescence could be a sign of plant life and even of ecosystems functioning in exoplanets that are in the habitable zone in solar systems similar to ours.

IT IS A VERY NARROW WINDOW, BUT IF LIFE EVOLVED IN ONE OF SOME OF THE EXOPLANTS IN THE MILKY WAY, WITH THE ADVANCE OF TECHNIQUES OF DETECTION OF CERTAIN SUBSTANCES AS WELL AS THEIR DINAMICS, COULD LEAD US TO THE CONCLUSION THAT LIFE SIMILAR TO EARTH'S ARE PRESENT.

AS PLANTS DON'T EXIST ALONE, THEIR VERY PRESENCE WOULD BE INDIRECT EVIDENCE OF OTHER TYPES OF ORGANISMS

Thank you msbuck@usp.br

Spectrum of Solar Radiation (Earth)

