Where should we look to find vestiges of
life in exoplanets?
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Are we alone in the
universe?

1) There are hundreds of BILLIONS OF galaxies
2) The Milkyway alone has hundreds of BILLIONS of stars
3) Each star has at least ONE plantet

4) THE POSSIBILITY OF FINDING LIFE OUTSIDE OF EARTH
IS NOT SO LOW
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KEPLER 186f Similar conditions to the Earth
Orbits a Red Star

Kepler-186f Kepler-186 System

Solar System
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Planet size: 1-2x Earth



EXAMPLES OF TYPES OF BIOCHEMISTRY ATERNATIVE
ALTERNATIVE TO EARTH’S BIODIVERSITY

Overview of hypothetical types of biochemistry

Type

Ammonia biochemistry

Arsenic biochemistry

Dust and plasma-based

biochemistry

Extremophiles

Methane biochemistry

(Azotosome)

Non-green
photosynthesizers

Silicon biochemistry
(Organosilico)

Sulfur biochemistry

Synopsis

Ammonia-based life

Arsenic-based life

Exotic matrix life

Life in variable environments

Methane-based life

Alternate plant life

Silicon-based life

Sulfur-based life

Basis

Non-water solvents

Alternate
biochemistry

Nonplanetary life

Alternate
environment

Non-water solvents

Other speculations

Alternate
biochemistry

Alternate
biochemistry

Remarks

The possible role of liquid ammonia as an alternative
solvent for life is an idea that goes back at least to 1954,
when JBS Haldane raised the topic at a symposium
about life's origin.

Arsenic, which is chemically similar to phosphorus,
while poisonous for most life forms on Earth, is
incorporated into the biochemistry of some organisms. |
In 2007, Vadim N. Tsytovich and colleagues proposed
that lifelike behaviors could be exhibited by dust
particles suspended in a plasma, under conditions that
might exist in space.

It would be biochemically possible to sustain life in
environments that are only periodically consistent with
life as we know it.

Methane(CH,) is a simple hydrocarbon: that is, a
compound of two of the most common elements in the
cosmos: hydrogen and carbon. Methane life is
hypothetically possible.

Physicists have noted that, although photosynthesis on
Earth generally involves green plants, a variety of other-
colored plants could also support photosynthesis,
essential for most life on Earth, and that other colors
might be preferred in places that receive a different mix
of stellar radiation than Earth.

Like carbon, silicon can create molecules that are
sufficiently large to carry biological information.

The biological use of sulfur as an alternative to carbon is
purely hypothetical, especially because sulfur usually
forms only linear chains rather than branched ones.
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Molecules of life
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Topological assessment of
metabolic networks reveals
evolutionary information
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. Evolutionary information was inferred from the topology of metabolic networks corresponding to 17
plant species belonging to major plant lineages Chlorophytes, Bryophytes, Lycophytes and Angiosperms.
The plant metabolic networks were built using the substrate-product network modeling based on the
metabolic reactions available on the PlantCyc database (version 9.5), from which their local topological
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Figure 1. (a) Average number of reactions ({(R)) versus the average number of metabolites ((N)) per plant
clade. The plant clades: Dicotyledons, Monocotyledons, Lycophytes, Bryophytes and Chlorophytes are listed
according with their average number of nodes and reactions. (b) The average number of plant metabolic
reactions in function of the average values of three topological measures namely, mean degree (k) (triangle),
average path length L (circle) and the incoming power-law exponent v;, (square), per each plant clade.



Code Biology: the semiotics of life
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“Life” on Earth: strong bias to animal life
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For life to exist as we know,
ecosystems are needed
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Sunlight and heat <



THE AMAZON

What do you see? Animals?
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Chlorophyll is well-adapted to use Solar Energy
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Atmospheric CO, concentration
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THE EVOLUTION OF THE GLYCOMIC CODE IN LIFE
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Cell wall model




574 Bioenerg. Res. (2013) 6:564-579
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WHAT TO LOOK FOR?

Plants are the more abundant organisms on earth in
terms of biomass. They are the energy capture machines
of ecosystems. Thus, if we want to search for Earth’s-like
life in exoplanets, we should look for......

1) green color reflection from the surface of exoplanets
be detectable?

2) Fluorescence of chlorophyll would also be an option;

3) Look for a combination of vibrations that could reveal
the presence of cellulose-like polymers;

4) O2and CO2 daily variations, combined with green
color and fluorescence could be a sign of plant life and
even of ecosystems functioning in exoplanets that are in
the habitable zone in solar systems similar to ours.

IT 1S AVERY NARROW WINDOW, BUT IF LIFE EVOLVED IN ONE OF SOME OF THE EXOPLANTS
IN THE MILKY WAY, WITH THE ADVANCE OF TECHNIQUES OF DETECTION OF CERTAIN
SUBSTANCES AS WELL AS THEIR DINAMICS, COULD LEAD US TO THE CONCLUSION THAT

LIFE SIMILAR TO EARTH’S ARE PRESENT.

AS PLANTS DON'T EXIST ALONE, THEIR VERY PRESENCE WOULD BE INDIRECT EVIDENCE OF

OTHER TYPES OF ORGANISMS
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