Theoretical studies of sulfur bearing molecular systems of astrochemical interest

M. Y. Ballester

Universidade Federal de Juiz de Fora

maikel.ballester@ufjf.edu.br, ufjf.br/lfmt

August 9, 2019

Overview

Motivation

- Sulfur deficit
- Sulfur-Silicon molecules
- Potential Energy Surfaces
 Analytic representation
- 3 Molecular Dynamics
 - Quasi classical trajectories
- 4 Studied Cases
 - H_2S^+
 - SiSH PES
 - $SO + OH \rightarrow H + SO_2$ at low temperatures

5 Forthcoming Steps and Challenges

Sulfur is an abundant element in the universe. With a relative abundance with respect to hydrogen of 1.5×10^{-5} (cosmic abundance) it has attracted interest in the astrophysics community¹. In diffuse clouds, only few molecules have been so far detected $(SO, SO_2, OCS, H_2S, etc.)$, with relative abundance similar to the corresponding cosmic abundance¹. On the contrary, in dense clouds, with a much lower temperature ($\sim 10 \mathrm{K}$) the abundance ratio of sulfur, measured in gas phase, is about a factor 1000 times lower than the cosmic abundance¹. One possibility to rationalize this problem is that sulfur is deposited in interstellar ices. These ices sublimate in hot cores or strong shocks appearing in the star formation, so that sulfur is expected to be back in gas phase. However, observations in hot cores of gas phase molecules report a relative abundance at least 10 times lower than the corresponding for cosmic abundance².

M. Y. Ballester (UFJF)

ALLAM 2019, IAG, USP

¹D. Rehder, Chemistry in space (Wiley, 2010), D.A. Neufeld, *et al.*, Astron. & Astrophys. 449, A577 (2015)

²A. Tieftrunk,*et al.*, Astron. & Astrophys. 289, 579 (1994) 🚓 🤉 🧃

A solution to this sulfur deficit enigma is either that sulfur remain in solid grains (hidden to observations due to other more intense signals) or in gas phase forming molecules not yet detected or assigned.

Sulfur incorporates to ices preferentially as H_2S , but is difficult to observe it [because its bands coincide with those from methanol, which are more intense]. Recent estimations establish an upper limit of 1% of H_2S with respect to H_2O_1 , providing a relative abundance 10 times lower than the cosmic abundance. Newly reported experiments have demonstrated that irradiated ices with H_2S produce H_2S_2 or S_2H , which photo-dissociate in S_2 and S_3^3 . The latter molecules have not been detected in space, S_2H does, but in a lower amount than in the laboratory⁴. For this reason it is supposed that this last molecule is either photo-dissociated or react in gas phase with some other species. Thus, accurate data for the S₂H destruction pathways in gas phase are required

M. Y. Ballester (UFJF)

ALLAM 2019, IAG, USP

³A.Jiménez-Escobar, et al., Astron. & Astrophys., 536, A91 (2011)

⁴R. Martín-Domenech, *et al.* Astron. & Astrophys. 585, A112 (2016) → 📱 → 📲 →

Other S-bearing molecule of interest is SiS. This molecule is detected in high abundance in the envelopes of carbon/oxygen-rich stars, together with SiO. The difference between these two molecules is that SiO is also detected with high abundance in shocks of the ISM associated with newly formed stars or with supernova ejects while SiS has only been detected so far in the ISM in Orion and L1157, both submitted to high velocity shocks. It is then important to understand the differences between SiS and SiO, in particular, why SiS is not detected in environments where SiO is observed, since in evolved stars both species are formed under tyhermodynamical equilibirum near the photosphere of the star. It is then important to study the reactions that depleting SiS.

Simulation models, as Meudon PDR⁵, are used to estimate elemental abundances. Kinetic and thermodynamic models are required considering accurate rate constants for all the considered collision processes are needed⁶.

⁶KIDA,KInetics Database for Astrochemistry http://kida.obs.u-bordeaux1.fr/ الع المراجع المراجع

M. Y. Ballester (UFJF)

⁵Le Petit *et al.* 2006, http://ism.obspm.fr.

Reaction	Rate Reaction
$O(^1S) + O_2(a^1) \rightarrow O + O + O$	3.2×10^{-11}
$O(^{1}S) + NO \rightarrow O + NO$	2.9×10^{-10}
$O(^{1}S) + NO \rightarrow O(^{1}D) + NO$	5.1×10^{-10}
$O(^1S) + O_3 \rightarrow O_2 + O_2$	2.9×10^{-10}
$O(^{1}S) + O_{3} \rightarrow O_{2} + O + O(^{1}D)$	2.9×10^{-10}
$O(^{1}S) + N_{2}O \rightarrow O + N_{2}O$	6.3×10^{-12}
$O(^{1}S) + N_{2}O \rightarrow O(^{1}D) + N_{2}O$	3.1×10^{-12}
$N + NO \rightarrow O + N_2$	$1.8 imes 10^{-11} imes (Tgas/300.0)^{0.5}$
$\rm N+O_2 \rightarrow O + \rm NO$	$3.2 \times 10^{-12} \times (\text{Tgas}/300.0) \times \cdots$
$\rm N+NO_2 \rightarrow O+O+N_2$	9.1×10^{-13}
$N + NO_2 \rightarrow O + N_2O$	3.0×10^{-12}
$\rm N+NO_2 \rightarrow N_2+O_2$	$7.0 imes 10^{-13}$
$\rm N + \rm NO_2 \rightarrow \rm NO + \rm NO$	2.3×10^{-12}
$\rm O + N_2 \rightarrow \rm N + \rm NO$	$3.0 \times 10^{-10} \times \exp(-38370.0/\mathrm{Tgas})$
$\rm O + \rm NO \rightarrow \rm N + \rm O_2$	$7.5 imes 10^{-12} imes (Tgas/300.0) \cdots$

3

Image: A math a math

As pointed out elsewhere, a full theoretical description of reactive collision (within the Born-Oppenheimer approximation) requires the knowledge of the potential energy surface (PES) for the molecular system⁷. Once the PES is accurately represented it can be used for molecular dynamics studies, describing then the reaction probabilities and molecular energy transfer during a collision.

M. Y. Ballester (UFJF)

⁷M. Brouard and C. Vallance, editors, Tutorials in Molecular Dynamics (RSC publishing, 2010). M. Y. Ballester, A theoretical Study on the HSO₂ molecular system, Ph.D. thesis, Universidade de Coimbra, http://hdl.handle.net/10316/7489 (2008). Y. Z. Song, *et al.*, Mol. Phys. 116, 129 (2018).

From quantum mechanics, a molecular system is decribed by the Schrödinger equation. In the case of stationary fields it assumes the form

$$\hat{H}\Psi = E\Psi \tag{1}$$

being \hat{H} the Hamilton operator, Ψ the system wave function and E the energy of the system. \hat{H} is then given by:

$$\hat{H}(\mathbf{r},\mathbf{R}) = \hat{T}_{\mathrm{N}}(\mathbf{R}) + \hat{H}_{\mathrm{e}}(\mathbf{r},\mathbf{R})$$
 (2)

where \hat{T}_N stands for the nuclear kinetic energy operator, \hat{H}_e is the electronic Hamiltonian.

In the frame of the Born Born-Oppenheimer approximation (BOA). The nuclei problem is reduced to:

$$[\hat{T}_{\rm N} + V_n(\mathbf{R})]\chi_n(\mathbf{R}) = E\chi_n(\mathbf{R})$$
(3)

where $V_n(\mathbf{R})$, stands for the energy resulting from the electronic problem. Within BOA, nuclei move on the potential energy function for a given electronic state. A global PES for an ABC triatomic system can be represented through a many-body expansion (MBE) scheme which is written as the following analytic functional form⁸

$$V_{\rm ABC}(\mathbf{R}) = \sum_{A} V_{\rm A}^{(1)} + \sum_{\rm AB} V_{\rm AB}^{(2)}(R_{\rm AB}) + V_{\rm ABC}^{(3)}(R_{\rm AB}, R_{\rm AC}, R_{\rm BC}), \quad (4)$$

where $V_{\rm A}^{(1)}$ represents the atomic energy in their corresponding electronic states, $V_{\rm AB}^{(2)}$ the diatomic term and $V_{\rm ABC}^{(3)}$ the triatomic term.

⁸J.N. Murrell, S. Carter, S.C. Farantos, P. Huxley and A.J.C. Varandas, *Molecular Potential Energy Functions* (Wiley, Chichester, 1984)

M. Y. Ballester (UFJF)

ALLAM 2019, IAG, USP

August 9, 2019 11 / 23

PES, analytic representation

The analytic expression of the diatomic terms $(V_{AB}^{(2)})$ can also be written as a sum of the short and long-range energy contributions, which is then expressed as:

$$V_{\rm AB}^{(2)}(R_{\rm AB}) = V_{\rm short}^{(2)}(R_{\rm AB}) + V_{\rm long}^{(2)}(R_{\rm AB}),$$
(5)

where

$$V_{\rm short}^{(2)}(R_{\rm AB}) = \frac{a_0}{R_{\rm AB}} e^{-\beta_1^{(2)} R_{\rm AB}},$$
 (6)

and

$$V_{\rm long}^{(2)}(R_{\rm AB}) = \sum_{i=1}^{n} a_i \left(R_{\rm AB} \, e^{-\beta_2^{(2)} R_{\rm AB}} \right)^i, \tag{7}$$

where R_{AB} represents the diatomic internuclear distances. The parameters a_0 , a_i , β_1 and β_2 are obtained by fitting *ab initio* points.

The three-body term $(V_{ABC}^{(3)})$ is written as the *M*th-order polynomial

$$V_{\rm ABC}^{(3)}(\bar{R}) = \begin{cases} \sum_{j,k,l=0}^{M} C_{jkl} \rho_{\rm AB}^{i} \rho_{\rm AC}^{j} \rho_{\rm BC}^{k} & (k=l) \\ \sum_{j,k,l=0}^{M} C_{jkl} \rho_{\rm AB}^{i} (\rho_{\rm AC}^{j} \rho_{\rm BC}^{k} + \rho_{\rm BC}^{j} \rho_{\rm AC}^{k}) & (k \neq l), \end{cases}$$
(8)

where $\bar{R} = (R_{AB}, R_{BC}, R_{AC})$, $\rho_{AB} = R_{AB} e^{-\beta_{AB}^{(3)}R_{AB}}$, which also holds for the expressions of ρ_{AC} and ρ_{BC} . The coefficients C_{jkl} and $\beta_{AB}^{(3)}$ are the linear and nonlinear parameters to be determined in the fitting.

The main idea behind QCT is to solve classical equations for the motion of atomic nuclei on the potential energy resulting from the electronic problem. Initial conditions are such that the classical values of energies and momenta are in accordance with the corresponding quantum values. Of course, once the time evolution follows classical laws, the mentioned values will no longer kept the correct physical meaning. Yet, averaged results from a considerable large number of so calculated trajectories are expected to produce consistent quantities.

For a given set of translational (E_{tr}) , and ro-vibrational energy of the reactants, the reactive/inelastic cross section for a given channel is calculated as:

$$\sigma_r(E_{tr}; v; j; v', j') = \pi b_{max}^2 \frac{N_r}{N_T}(E_{tr}; v; j; v', j')$$
(9)

being $\rm N_r$ the number of reactive/inelastic trajectories for a given channel from a total of $N_{T}.$

Then, if assuming a Maxwell-Boltzmann distribution over the translational energy the initial state specific rate coefficient is obtained as:

$$k(T; v, j, v', j') = g_e(T) \left(\frac{2}{k_B T}\right)^{3/2} \left(\frac{1}{\pi \mu}\right)^{1/2} \int_0^\infty E_{tr} \sigma_r(E_{tr}; v; j; v', j') \\ \times \exp\left(\frac{-E_{tr}}{k_B T}\right) dE_{tr}$$
(10)

Where T is the temperature, μ is the reduced mass of the reactants, k_B is the Boltzmann constant, and $g_e(T)$ is a factor accounting for the electronic degeneracy

H_2S^+ PES and dynamics⁹

Figure: Contours plot for the $H_2 + S^+ \rightarrow H + HS^+$ reaction PES.

⁹ Y. Z. Song, <i>et al.</i> , Mol.	Phys. 116, 129 (2018)	• • • •	★@→ ★ ≣→ ★ ≣→ ↓ ≣	596
M. Y. Ballester (UFJF)	ALLAM 2019, IAG, USP		August 9, 2019	17 / 23

H_2S^+ PES and dynamics¹⁰

Figure: Calculated and experimental cross-section for ${\rm H_2} + {\rm S^+} \rightarrow {\rm H} + {\rm HS^+}$ reaction

¹⁰Y. Z. Song, et al., Mol. Phys. 116, 129 (2018)

M. Y. Ballester (UFJF)

ALLAM 2019, IAG, USP

Figure: Contours plot for the $S + SiH \rightarrow H + SSi$ reaction PES

M. Y. Ballester (UFJF)

ALLAM 2019, IAG, USP

August 9, 2019 19 / 23

2

$SO + OH \rightarrow H + SO_2$ at low temperatures¹²

Figure: Rate constant for the $SO + OH \rightarrow H + SO_2$ reaction

The updated rate constant is 4 times larger than previous values used in simulations. Better accordance of the Astronomical observations was obtained

¹²A. Fuente, *et al.* Astron. & Astrophys. 624, A105 (2019) $(\bigcirc \)$ $(\bigcirc \)$ $(\bigcirc \)$

M. Y. Ballester (UFJF)

ALLAM 2019, IAG, USP

- Accurately represent interatomic potentials: Validate with experimental evidences (molecular structure, spectroscopic data)
- Calculate rate constants: Good agreement with experimental values. Reliable predictions at the low temperature domain
- Include updated results in the kinetic and termodynamic models
- Rationalize observations

- High level electronic structure calculations are expensive.
- Analytically representing a PES requires dealing with functions of more than 3 dimensions.
- The use of machine learning (*e.g.* Neural) needs a huge number of *ab initio* points and needs to circumvent gradient problems
- Models for the calculated cross sections may eventually fail. New models are required.
- Quantum dynamics calculations, involving sulfur atoms are still too expensive

Collaborators

J.D. Garrido(UNILA-Brasil), O. Roncero (CSIC-Madrid), Y-Z, Zong (SNU-China), D.C. Gomes (UFJF-Brasil), R.S. da Silva.(UFJF-Brasil) <u>Financial Support</u> CAPES and PGF-UFJF